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Abstract. This paper describes our research into a query-by-semantics approach to searching the World Wide
Web. This research extends existing work, which had focused on a query-by-structure approach for the Web. We
present a system that allows users to request documents containing not only specific content information, but also
to specify that documents be of a certain type. The system captures and utilizes structure information as well as
content during a distributed query of the Web. The system also allows the user the option of creating their own
document types by providing the system with example documents. In addition, although the system still gives users
the option of dynamically querying the web, the incorporation of a document database has improved the response
time involved in the search process. Based on extensive testing and validation presented herein, it is clear that
a system that incorporates structure and document semantic information into the query process can significantly
improve search results over the standard keyword search.
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1. Introduction

The task of accessing and processing information in today’s business world is a necessity.
However, as more and more information is recorded, being able to sift through all this
information to capture what is relevant has become increasingly more difficult. Traditional
database systems have, for the most part, been able to keep up with the increased amount of
data because hardware technology such as processor speed and memory size has increased
as well. However, in recent years a significant paradigm shift towards relying on distributed
information repositories has occurred, largely due to the phenomenal growth of the World
Wide Web. Once again, database systems were able to keep abreast thanks in part to new
networking technology and research into distributed database systems. However, the new-
style distributed database systems still rely heavily on the old-style structure of tables,
records, and fields that are inherent in traditional database systems. As a result, these
systems cannot easily adapt to handling unstructured and semi-structured data.

From a closed-world perspective, not being able to adapt to unstructured or semi-
structured data would not be an issue. In fact, it has always been the responsibility of



156 JOHNSON ET AL.

the data to adapt to the structure of the database system. However, for many database tra-
ditionalists who originally perceived the Web as the “goose that laid the golden egg”, it
has become a realization that in actuality, the Web is much more like “Pandora’s Box”,
and unfortunately, it has already been opened. In the time span of just a few short years,
the number of web pages has grown exponentially. There are billions of pages on the
Web (according to their web site, Google [9] alone has indexed over 3 billion web pages).
Although some web sites use traditional-style databases to generate page content, most
web pages are written in Hypertext Markup Language (HTML). When viewed in a web
browser, these documents are essentially unstructured. However, the source code of an
HTML document contains specific structure information relating to how the document
should be rendered by the browser. Hence an HTML web page is actually a semi-structured
document. Unfortunately, although these types of documents are visually appealing, to the
traditional database query system, about the only useful information is the text within the
page.

Early web search systems (many of which are still in use today) performed queries of
the web by capturing and storing page information in a database. Users then search the
database by providing key search words. The results of the search are simply a list of links
to the pages that contain the specified words. However, these types of search engines are
much less effective today because of the vast size of the Web. This is the case not because
the query system cannot handle searching a large amount of data but rather because typical
searches can results in thousands of purportedly relevant web documents. Hence, a sig-
nificant amount of research has gone into improving web searches. However, most of the
research into improving searches has involved analyzing the content of a document. Our
approach, on the other hand, has been to take advantage of the fact that a web page is a
semi-structured document, and that web designers utilize structure to emphasize particularly
important aspects of their documents. Our prior research, documented in “A Neural Net-
work Net Query-by-Structure Approach” [15] has shown that capturing and using structure
information during the query process can significantly enhance performance.

2. Query-by-semantics system

Our research began with a query by-structure approach using a system we designed called
CLaP system [7]. CLaP was designed in an attempt to enhance Web searches by allowing the
user to search for web pages containing words that were structured and presented in a specific
way within a web page. However, due to the extensive amount of information required of the
user during the query, it became apparent that another approach was necessary. Hence, two
new systems that employed neural networks to organize the information based on relevancy
of both the content and the structure of the document were created [15]. The primary goal
of these systems, called AN3 systems, was to test the feasibility of using neural networks
to improve query performance while eliminating the need for the complex user queries.
The initial results from the testing were promising enough to warrant further research.
However, it was clear that significant changes were required. In particular, the system
used prototype vectors that were handcrafted to represent the designer’s interpretation of a
specific document type.
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There are at least two major problems with this approach. First, users of the system may
have entirely different opinions about how a specific type of document should be structured.
Secondly, determining the components of the document types at system configuration time
limits the number of document types, when in fact; there are an infinite number of different
types of web documents. Clearly, a better approach, such as allowing the user to provide
the details regarding a document type, was needed. But, so as not to repeat the drawbacks
of the CLaP system, instead of asking the user to provide detailed structure information, a
better approach is to have the system simply asks the user to provide example documents
that are representative of the document types. These examples could then used to create the
prototype vectors.

2.1. Overview of query-by-semantics system

A high-level overview of the query process for the query-by-semantics system can best
be given by examining the architecture depicted figure 1. Prior to initiating a query, the
system must be configured with sets of documents representing various document types. In
the architecture, this is represented by the Document Type module, where the process for
each different document type involves creating a document type name, providing a set of
documents that represent examples of that document type, and then constructing a vector that
represents the features of that document type. Once the document types have been defined
in the systems, users initiate a query using keywords and a document type. The systems
provide the option of initiating the query from an existing web search engine or querying a
local database. This is reflected in the architecture by a query to the Document Repository
component. However, regardless of the option selected, the documents that are returned
from the Document Repository are simply a set of web documents that match the initial
keyword search. These documents are then sent to the Machine Learning module along
with the document type selected by the user. The output of the Machine Learning module is
effectively the same documents input to the module from the Document Repository module
but ordered or ranked based on how closely the documents match the type of document
requested by the user. In fact, when a web query is performed, the output is simply the
URLs and descriptions captured in the initial commercial search engine query but in the
order specified by the Machine Learning module.

Figure 1. Query-by-semantics system architecture.
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Figure 2. Document type module.

The system presented in this paper utilizes a modified Hamming neural network [10]
within the Machine Learning module. A Hamming neural network is a supervised learning
network that consists of two layers. The first layer (Feedforward Layer) performs a cor-
relation between the input vector and the prototype vectors. The second layer (Recurrent
Layer) performs a competition to determine which of the prototype vectors is closest to the
input vector. The network is considered supervised because it utilizes prototype vectors,
which are determined in advance and are designed to match the expected input vectors.

Hence, prior to being able to classify documents, the neural network system must first
have initialized prototype vectors. These vectors are constructed from the document type
feature vectors (DTFV). These vectors are obtained from the Document Type module.
However, as mentioned earlier, the first step is to create a representation of the document
types to be searched for. This is accomplished by providing the example documents to the
Document Type module of the system.

As shown in figure 2, the output of the Document Type module is a set of document type
feature vectors. Each vector is essentially a description of a document type based on a set of
different, yet similar, documents. As its name suggests, this description is in the form of a
vector, which is constructed using a set of document feature vectors (DFV). The document
feature vectors, which are constructed from the example documents provided by the user, are
first grouped into document types. These vectors are then input into a module that constructs
the separate document type feature vector for each document type. The following sections
describe the different implementations utilized in their construction of these vectors.

2.2. Document feature vector

The input to the Machine Learning module is a set of vectors. Hence, each example HTML
document provided by the user must be converted into a vector. This vector makes up the
features of the document. The concept of the document feature vector was first presented in
the neural network query-by-structure systems. However, the feature vectors were based on
a specific set of system-defined words contained within a specific set of tags. For example,
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the feature vector for a document type considered to be a news article was constructed to
represent a small set of relevant words (such as business, news, sports, article) and a set
of HTML tags which those words should appear within (such as bold (<b>), underline
(<u>), font (<font>) and italics (<i>)).

However, for the query-by-semantics system, the document type feature vector must be
dynamically constructed from the examples provided by the user. As a result, an entry in
the document feature vector must allow for almost any word within almost any tag. This
entry can best be describes as a <tag, word, value> triple, where tag represents an HTML
or XML tag, word represents a word in the document, and value represents the number of
times that the word appeared within the document inside the specific tag. So, when provided
with an example document, the system parses the document and creates a document feature
vector as a collection of <tag, word, value> triples.

Like the neural network query-by-structure systems, not all tags and words are included
in the document feature vector. However, instead of specifying which tags and words to
include in the feature vector, the system specifies certain stop tags and stop words that are
not to be included. In other words, all tags and words not labeled as stop tags or stop words
are considered to be valid tags and words, respectively. In addition, since the system does
not designate the stop tags when determining which tags to treat as valid, a mechanism
was implemented to provide the user with the capability to dynamically add or remove tags
from the list of stop tags between queries. Although not required, there are several tags
that should be excluded since they do not provide any additional structure information (i.e.
<body>, <script>, <style>, etc). However, this is left up to the discretion of the user. As
a result, since the system does not have a predefined set of acceptable tags, any properly
structured HTML and even XML tags will be captured by the system.

As far as identifying valid words, instead of predefining the list of important words, the
system allows for any word to be included in the document feature vectors. The system
does perform some stemming by removing all punctuation and numeric symbols from the
words. Additionally, the system does incorporate two ways for the user to specify invalid
words. First, the user can add words to a list of invalid stop words. Hence, words such as:
them, that, the, you, etc. can be ignored by the parser when encountered in a document.
Secondly, so as to allow the user to easily specify a much larger set of invalid words, the
system incorporates a mechanism for the user to specify the size of the valid word. For
example, the user can specify that the document feature vectors can only contain words of
three characters or more. Although not as robust as utilizing a comprehensive list of stop
words, this is clearly much less cumbersome for the user.

A document feature vector is constructed with a one-pass parser that identifies only tags
and words allowed by the user-defined word size and list of invalid tags. The final result of
the parsing is a collection of <tag, word, value> triples which make up a document feature
vector.

2.3. Document type feature vector

The construction of the document type feature vector was an important component of the sys-
tem so six different algorithms were evaluated. Each algorithm is fairly straightforward with
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the fundamental objective being to determine a value to associate with each <tag, word>

pair in the document type feature vector. This value plays an important role in determining
the significance of each <tag, word> pair. However, it should be clear that the resultant doc-
ument type feature vector from all six algorithms is simply a vector of <tag, word, value>
triples that contains exactly one entry for each possible <tag, word> pair in all document
feature vectors that belong to one document type, with no <tag, word> pair being repeated.
Mathematically <tag, word> pairs for document type k can be described as the union of
the <tag, word> pairs of all document feature vectors for type k:

<tag, word> of DTFVk = ∪<tag j , word j> of DFVi (1)

where i is the index of document feature vectors for document type k and j is the index of
<tag, word> pairs in document feature vector i . Once the <tag, word> pairs are fixed, the
value component of DTFV could then be computed by different ways (see Method #1 to
Method #6 below for details).

Each algorithm applies two functions, namely val and modify. The val function, when
given a tag and word as input, simply returns the value associated with the correspond-
ing <tag, word, value> triple in the document type feature vector. Likewise, the modify
function, when given a tag and word as input, modifies the value associated with the corre-
sponding <tag, word, value> triple in the document type feature vector based on a value
provide as the third input. In addition, the modify function also returns the document type
feature vector as output from the function.

Method #1: Incremental Sum Algorithm

Each document type feature vector (DTFV) is constructed by taking each document feature
vector (DFV) of the same type i and counting the number of common <tag, word> pairs
with this result being placed in the document type feature vector value of the <tag, word,
value> triple having the same <tag, word> pair as follows:

∀i DFV ∀ j <tag, word, value>,

DTFV =
{

DTFV ∪ <tag j , word j , 1> <tag j , word j>i /∈ DTFV

modify(tag j , word j , val(tag j , word j ) + 1) <tag j , word j>i ∈ DTFV

Note that in the Incremental Sum algorithm, the value (the number of occurrences of a word)
in the document feature vector <tag, word, value> triple is not considered when creating the
document type feature vector. Hence, when a new <tag, word> pair is encountered, a new
<tag, word, value> triple is created in the document type feature vector with a value of 1
regardless of the value in the document feature vector <tag, word, value> triple. In addition,
each subsequent occurrence of the same <tag, word> pair in a document feature vector
<tag, word, value> triple results in the value of the corresponding <tag, word, value>
triple of the document type feature vector being incremented.
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Method #2: Value Sum Algorithm

Each document type feature vector (DTFV) is constructed by taking each document feature
vector (DFV) of the same type i and adding the values in the <tag, word, value> triples
whose document feature vectors have common <tag, word> pairs with this result being
placed in the document type feature vector value of the <tag, word, value> triple as follows:

∀i DFV ∀ j<tag, word, value>,

DTFV =



DTFV ∪ <tag j , word j , value j> <tag j , word j>i /∈ DTFV

modify(tag j , word j , val(tag j , <tag j , word j>i ∈ DTFV
word j ) + value j )

As opposed to the Incremental Sum algorithm, in the Value Sum algorithm, the value in
the document feature vector <tag, word, value> triple is considered when creating the
document type feature vector. Hence, when a new <tag, word> pair is encountered, a
new <tag, word, value> triple is created in the document type feature vector with the
corresponding value being identical to the value of <tag, word, value> triple in document
feature vector. Likewise, each subsequent occurrence of the same <tag, word> pair in
a document feature vector results in the value of the <tag, word, value> triple of the
document type feature vector being increased by the value of the <tag, word, value> triple
in document feature vector.

Method #3: Saturated Incremental Sum Algorithm

Each document type feature vector (DTFV) is constructed by taking each document feature
vector (DFV) of the same type i and counting the number of common <tag, word> pairs
with this result being placed in the document type feature vector value of the <tag, word,
value> triple just as in the Incremental Sum algorithm. However, a upper bound limit b1 is
place on the size of the value in the respective <tag, word, value> triple of the document
type feature vector as follows:

∀i DFV ∀ j<tag, word, value>,

DTFV =



DTFV ∪ <tag j , word j , 1> <tag j , word j>i /∈ DTFV

modify(tag j , word j , val(tag j , <tag j , word j>i ∈ DTFV
word j ) + 1) ∧ val(tag j , word j ) ≥ b2

Note that if b1 = i (the number of document feature vectors), the functionality of the
Saturated Incremental Sum algorithm is identical to that of the Incremental Sum algorithm.
Since neither considers the value of the <tag, word, value> triple in the document feature
vector when creating the document type feature vector. Hence, setting the value of b1 to
anything greater i would be pointless.
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Method #4: Saturated Value Sum Algorithm

Each document type feature vector (DTFV) is constructed by taking each document feature
vector (DFV) of the same type i and adding the values in the <tag, word, value> triples
whose document feature vectors have common <tag, word> pairs just as in the Value Sum
algorithm. However, like the Saturated Incremental Sum algorithm, an upper bound limit
b2 is place on the size of value in the respective <tag, word, value> triple in the document
type feature vector as follows:

∀i DFV ∀ j<tag, word, value>,

DTFV =




DTFV ∪ <tag j , word j , b2> <tag j , word j>i /∈ DTFV
∧val(tag j , word j ) ≥ b2

DTFV ∪ <tag j , word j , value j> <tag j , word j>i /∈ DTFV
∧val(tag j , word j ) < b2

modify(tag j , word j , b2) <tag j , word j >i∈ DTFV
∧ value j + val(tag j , word j ) ≥ b2

modify(tag j , word j , < tag j , word j>i ∈ DTFV
val(tag j , word j ) + value j ) ∧ value j + val(tag j , word j )<b2

As opposed the Saturated Incremental Sum algorithm, there is no limit to the size se-
lected for b2. In fact, selecting too small a value for b2 could result in the value of one
<tag, word, value> triple from a document feature vector entirely saturating the value in
the corresponding <tag, word, value> triple in the document feature type vector.

Method #5: Modified Saturated Value Sum Algorithm

Each document type feature vector (DTFV) is constructed by taking each document feature
vector (DFV) of the same type i and adding the values in the <tag, word, value> triples
whose document feature vectors have common <tag, word> pairs just as in the Value Sum
algorithm. However, as opposed to the previous Saturated Value Sum algorithm, an upper
bound limit b3 used to limit the size of the value of a <tag, word, value> triple in the
document feature vector as follows:

∀i DFV ∀ j<tag, word, value>,

DTFV =




DTFV ∪ <tag j , word j , b3> <tag j , word j>i /∈ DTFV
∧ val(tag j , word j ) ≥ b3

DTFV ∪ <tag j , word j , value j> <tag j , word j>i /∈ DTFV
∧ val(tag j , word j )<b3

modify(tag j , word j , val(tag j , <tag j , word j>i ∈ DTFV
word j ) + b3) ∧ value j ≥ b3

modify(tag j , word j , val(tag j , <tag j , word j>i ∈ DTFV
word j ) + value j ) ∧ value j<b3
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Note that the difference from the previous Saturated Value Sum algorithm is that the upper
bound limit b3 is placed on the value in the <tag, word, value> triple of each document
type feature vector, rather than the value in the corresponding <tag, word, value> triple of
the document type feature vector. Additionally, if b1 = 1, the functionality of the Modified
Value Sum algorithm is identical to that of the Incremental Sum algorithm since regardless
of the value of the <tag, word, value> triple in the document feature vector, only a 1 is
added to the corresponding value in the <tag, word, value> triple of the document type
feature vector.

Method #6: Modified Saturated Base Value Sum Algorithm

Each document type feature vector (DTFV) is constructed by taking each document feature
vector (DFV) of the same type i and adding the values in the <tag, word, value> triples
whose document feature vectors have common <tag, word> pairs just as in the Modified
Saturated Value Sum algorithm. However, in addition to the upper bound limit b3, a base
value b4 is also applied to the size of the value of a <tag, word, value> triple in the document
feature vector as follows:

∀i DFV ∀ j<tag, word, value>,

DTFV =




DTFV ∪ <tag j , word j , b3 + b4> <tag j , word j>i /∈ DTFV∧
val(tag j , word j ) ≥ b3 + b4

DTFV ∪ <tag j , word j , value j + b4> <tag j , word j>i /∈ DTFV∧
val(tag j , word j ) < b3 + b4

modify(tag j , word j , val(tag j , < tag j , word j>i ∈ DTFV
word j ) + b3 + b4) ∧ value j ≥ b3 + b4

modify(tag j , word j , val(tag j , <tag j , word j>i ∈ DTFV
word j ) + value j + b4) ∧ value j<b3 + b4

Note that the difference from the previous Modified Saturated Value Sum algorithm is that
the inclusion of the base value b4 imposes a lower bound on the value in the <tag, word,
value> triple of each document type feature. The general idea here was to give more weight
to the second occurrence of a <tag, word> pair, but not twice as much as the first occurrence
of that same <tag, word> pair.

Analysis of each of the above algorithms was performed and is documented in the fol-
lowing chapter. As mention earlier, the objective was to determine the value to associate
with each <tag, word> pair in thedocument type feature vector. However, in order to de-
termine the actual document type feature vector used by the system, after each algorithm
completed, the <tag, word, value> triples were sorted as only the <tag, word> pairs with
the top n highest values of the document type feature vector are utilized by the prototype
vectors.
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Figure 3. Machine learning module.

2.4. Machine learning module

The Machine Learning module for this system, as shown in figure 3, incorporates a modified
version of the Hamming neural network that was originally used in by query-by-structure
systems. The Hamming neural network is a supervised neural network because it utilizes
prototype vectors that are determined prior to the processing of the input vectors. Ideally,
the prototype vectors should be designed to resemble the expected input vectors. Hence,
the first step in designing the Hamming neural network for the system was to initialize the
prototype vectors.

The prototype vectors were created using the document type feature vectors. In the neural
network, each document type has its own prototype vector. However, these vectors are not
identical to the corresponding document type feature vector because the prototype vectors
must contain not only entries for the document type that is being represented by that vector,
but also by other document types that are not representative of the document type. Hence
it is necessary to include the entries of the other document type feature vectors in each
prototype vector.

One significant issue that was addressed was the number of entries per document type
feature vector to include in the prototype vectors. Each document type feature vector is a
sorted vector (by value) containing <tag, word, value> triples that includes the tags and
words of a number of similar documents. However, the value components of the vector
provide a measurement of the significance of each <tag, word> pair. Hence, constructing
the prototype vector (PV) for each document type was simply a matter of combining the n
most relevant entries in the document type feature vector with the top n entries in several
other document feature vectors.
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Hence, using the sorted document type feature vectors, a list of words and a list of tags is
constructed based on the most relevant n entries. This list is comprised of the each unique
<tag, word> pair in the i document type feature vectors being considered. Here, the number
of unique tags multiplied by the number of unique words provides the size of a prototype
vector where each entry in the prototype vector results in a unique <tag, word> pair. Since
the number of document type feature vectors represents the number of prototype vectors, the
last component of the construction of the prototype vectors is to simply create a prototype
vector from each document type feature vector by setting an entry in the prototype vector to
1 if the equivalent <tag, word> is in one of the first n entries in the document type feature
vector and setting it to 0 otherwise. One thing to note here is that regardless of whether a
feature is the top feature or the nth feature, the value in corresponding value in the prototype
vector is the same, namely 1. It should also be noted that the value n can be adjusted by the
user.

The input vectors to the neural network were constructed from the documents identified as
relevant by the initial user query and hence obtained from the Document Repository module.
However, since the input vectors to the neural network must be of identical structure to that
of the prototype vectors, the input needed to be modified. However, since the output of
the document repository was a vector of <tag, word, value> triples, constructing the input
vectors simply involved scanning this input to identify <tag, word> pairs within the input
documents that corresponded to all possible <tag, word> pairs within the prototype vectors.
If the <tag, word> pair appeared in an input document and prototype vector, its value was
placed in the input vector. Any <tag, word> pairs in the prototype vectors that are not in
the input document result in a 0 being inserted into the appropriate location in the input
vector. And, any <tag, word> pairs in the input document that are not in the prototype
vectors are merely discarded.

Once the input vectors and prototype vectors have been properly formed, they are input
to the Hamming neural network. This network is virtually identical to the previous query-
by-structure approach, the specific details of this network can be found in “Enhancing
Query-by-Structure Neural Network Net Approach” [14]. Upon completion, the output
from the neural network is a set of vectors representing which prototype vectors most
closely matches each input vectors. Recall, though, that the objective of this system was to
determine which of the web documents (input vectors) most closely matches the selected
document type (prototype vector). Fortunately, the network output works rather well in
solving this problem as our network not only returns the score of the winner, but also the
scores of the losers. Hence, sorting the values in each of these vectors, from highest to
lowest, provides a new ranking of the web documents. So, after sorting, the system can
simply output the URLs and descriptions captured by the Document Repository but in the
order specified by the neural network.

2.5. Document repository module

In order to improve query response time and to conduct worthwhile analysis, it was imper-
ative to incorporate a document database into the system. Initially, an attempt was made to
incorporate an existing database/search engine package called ht://dig [24]. However, since
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the prototype vectors required that the input documents be mapped to vectors containing
<tag, word, value> triples, it was still necessary to perform a retrieval of each of the web
documents in order to capture document structure. As a result, at this time, a simplified
document database was developed.

Currently, the document database, although functional, is somewhat small and rudimen-
tary. The database is populated each time a user performs a dynamic web query by first
sending the retrieved web pages to the Document Repository module before sending them to
the neural network. In the initial implementation, instead of saving the web pages retrieved,
the Document Database module saved the document feature vectors. By maintaining doc-
ument feature vectors, not only is the time to dynamically retrieve the documents from
the web eliminated, but the time to parse the documents as well. In addition, the amount
of storage needed to maintain only the feature vectors is significantly less than would be
needed to save entire documents.

However, by not maintaining local copies of the entire document, too much relevant
information was lost. In particular, because the user has the capability to dynamically add
or remove stop tags and stop words, any change to these system parameters could result
in inconsistent future results. Hence, it was necessary for the system to capture the entire
document and store in the database along with its corresponding URL. As a result, any
query to the local database requires that each document be parsed prior to being sent to the
Machine Learning module. Although not as significant as having to issue a query on the
Web, this did result in a slower response time.

In an attempt to improve response time, a couple other modifications were made to the
Document Repository module. First, when a document is first placed into the database,
it is indexed by document type since the document type selected by the user is known.
This allows for future local database queries to significantly prune down the search space
by simply considering documents that have been indexed by the desired type. The ob-
vious drawback is that any documents of that type that have been placed into another
document types space will not be considered by that particular query. This is probably
not too significant when, for example, considering two types such as resumes and recipes.
Clearly, it is unlikely that many recipes will end up being returned from a Web query
requesting resumes. However, if a user decides to add a new type that one would con-
sider a subtype of an existing type (i.e. artist resumes as opposed to resumes), clearly
some highly relevant documents will not be considered when a local database query is
issued.

The second modification involved the issue of duplicate documents. If a user were to
issue an identical query to the Web twice in a row, the exact same set of documents would
be returned by the search engine and captured by the Document Repository module. The
initial implementation handled this issue by simply replacing the existing copy with the most
recently received copy. However, since this required examining all the captured URLs, as the
database began to increase in size, a notable performance decrease was observed whenever
a dynamic query to the Web was initiated. As a result, it was decided that the Document
Repository module would simply capture and store duplicate copies. Hence, for now, the
system handles the issue of duplicate copies off-line by periodically running a program to
clean the database of any duplicate documents.
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Figure 4. User interface.

2.6. User query module

The user interface to the system, shown in figure 4, allows to users initiate a query using key
search words, the maximum number of URLs to be provided in the results, and a document
type.

The user does not need to use the words in the document type because the system
usesquery modification [11] to add the document type to the query prior to issuance to the
Document Repository module. The type field is used by the system to categorize document
structure. In addition, the system provides the option of initiating the query from an existing
web search engine (currently Altavista [1] or Google) or querying a local database.

If the user selects the local database, a basic select operation is performed to identify all
appropriate documents. However, if the query is initiated on one of the search engines, the
system performs a standard web search on the specified commercial search engine using the
search words. Since the results of the search are simply a list of the pages deemed relevant
by the search engine, the system must then retrieve the source code of each of the web pages
and parse each document to capture and analyze the document structure. But, regardless
of the option selected, the documents that are returned from the Document Repository are
simply a set of web documents that match the initial search. Along with the document type
selected by the user, these documents are then sent to the Machine Learning module as
a vector of <tag, word, value> triples. The value component of this triple represents the
number of times the corresponding word appeared between the associated begin/end tag.

2.7. Principle component analysis (PCA) system

The ultimate goal for Machine Learning module is to be able to provide the user with
the capability to select different machine learning approaches for their queries. Currently,
however the interface to provide this capability has not yet been designed. However, using
the data gathered from the other system modules, various machine learning approaches can
be tested off-line.

One such approach tested was using Principle Component Analysis (PCA). PCA is a
well-known method for feature extraction, data compression, and multivariate data projec-
tion. Feature extraction can be used to reduce the dimensionality and hence improve the
generalization ability of classifiers. Data projection methods enable the visualization of
high dimensional data to better understand the underlying structure, explore the intrinsic
dimensionality, and analyze clustering tendency of multivariate data [20].
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Figure 5. PCA architecture.

The architecture of the PCA system is shown in figure 5. In terms of the modules presented
earlier, the Construct Document Feature Matrix module is essentially the Document Type
Module and the n input documents are the document feature vectors labeled by document
type. This module simply constructs a matrix of n rows with the number of columns defined,
once again, to be the size of:

| ∪ <tag j , word j> of DFVi |

The entries of the matrix are simply the values of the <tag, word> pairs.
Once the feature matrix has been constructed, it is sent to the PCA module, which maps

the original matrix to a new space and reduces the number of features. The end result is a
new matrix containing n rows and m columns where the number of columns represents the
new features defined by PCA. This matrix combined with the n original training documents
is used to train the neural network classifier. For this system a two-layer backpropagation
network [10] was used. Finally, after the neural network classifier has been trained, it is
ready for user queries. Users can issue queries just as before, however apart from the
neural network used, there are two significant differences. First, since PCA transforms
the original input documents to a new space, using the eigenvectors created from PCA, a
mapping function must be used transform the input documents to the new space. In addition,
although the user does select a document type for their query, its value is not provided to
the neural network. The final output is once again a set of ranked classified documents.
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Figure 6. Hybrid PCA architecture.

2.8. Hybrid PCA system

Although PCA is a powerful technique for mapping large dimension matrices to much
smaller dimension matrices, in order to work effectively, it typically requires a rather large
sample set. However, the goal of the query-by-semantics system was to allow the user to
dynamically add and remove document types during a query session. Since the larger the
matrix, the longer PCA takes to compute, a hybrid approach was attempted in order to reduce
the size of the original matrix. Figure 6 represents the architecture for this approach, and it
is virtually identical the original PCA architecture with one subtle difference, specifically
that the document type feature vectors are used in conjunction of the input documents to
create the document feature matrix.

3. Analysis and results

Prior to the inclusion of the Document Database Module, the only way to validate the system
had been to issue queries to the web and then analyze the results. This involved performing
an exhaustive brute force approach of viewing each document to determine if it actually was
of the desired type was necessary. It is our contention that the following analysis and results
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not only validate the system but provide significant support to the quality of the results as
well.

3.1. Document type feature vector analysis

The document feature vectors and document type feature vectors are dynamic in the sense
that the user of the system can define them. However, they are static when related to
the actual user query since both of these vectors can be constructed offline prior to the
issuance of a query. Regardless, it should be clear based on simple analysis of all approaches,
the time complexity of these algorithms is quadratic in terms of the words and tags.

Although the system allows the user much flexibility in setting parameters for things such
as invalid tags, stop words, word size, etc., after analyzing preliminary results, it was decided
that the Modified Saturated Base Value Sum algorithm should be used in the construction
of the document type feature vector. The new system was originally constructed with the
first method, the Incremental Sum algorithm. This method simply determined whether a
<tag, word> pair existed in a document type feature vector with no consideration to the
number of occurrences. However, by not counting the number of occurrences within a
specific document, valuable content and structure information might be lost. For example,
consider a document in which the word University was boldfaced and underlined three
times. Clearly, this content and structure might be very relevant in a resume document.
Hence, the Value Sum algorithm was designed to capture this information.

Unfortunately, the Value Sum algorithm had a major drawback. This was that one poorly
selected document could severely corrupt a document type feature vector. As an example
from actual testing, when constructing a document type feature vector for a document type
representing “Faculty Home Page”, a well-structured faculty home page from a professor
from South Carolina was utilized as one of the document feature vectors. However, this
particular professor had a bullet list of published papers at the tail end of the document. The
problem stemmed from the fact that most of these papers were published in conferences
in North Carolina and South Carolina. As a result when the document type feature vector
was constructed, the two most significant <tag, word> pairs were <ul, Carolina> and
<i, Carolina>. Although this content/structure combination might be relevant to a “South
Carolina Faculty Home Page” document type, the word “Carolina” clearly should not be
relevant to the more generic “Faculty Home Page” document type. As a result, it became
apparent that this approach had the potential of adversely favoring one or two documents.

This above result led to the exploration of the Saturated Incremental Sum algorithm
and Saturated Value Sum algorithm. The original intent was to limit the effects of specific
<tag, word> pairs by placing an upper bound on the number of times they would be
counted. Unfortunately, the Saturated Incremental Sum algorithm seemed to always perform
worst than the original Incremental Sum algorithm and the Saturated Value Sum algorithm
did not result in significantly improved results. If the upper bound was set too high, it
performed just like the original Value Sum algorithm and if the upper bound was set too
low, it performed very much like the Incremental Sum algorithm. In addition, the results
varied with different document types, so finding a proper upper bound for all types was not
possible.
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It turned out that the Incremental Sum algorithm was actually the best approach of the
first four algorithms. The logical explanation for this was that it actually identified the most
common <tag, word> pairs among all example documents. In other words, it should be
more relevant that a common <tag, word> pair appear in several different documents, than
for a <tag, word> pair to appear several times in only one document. However, in another
attempt to take advantage of the value information, the, Modified Saturated Value Sum
algorithm was designed. This algorithm placed the upper bound not on the total number of
<tag, word> pairs in all documents, but on the total number of <tag, word> pairs within
each document. The results observed when using this algorithm were a definite improvement
over the other two algorithms that incorporated the value of <tag, word> pair provided
the upper bound was not set too high. This was due to the fact that the algorithm limited
the effect that a number of <tag, word> pairs could have on the document type feature
vector. For example, if the <tag, word> pair <ul, Carolina> appeared twelve times in one
document, instead adding a value of twelve for that pair to the document type feature vector,
the value of the upper bound was assigned to that feature.

Unfortunately, although the results were favorable, for most cases this algorithm still
did not perform as well as the Incremental Sum algorithm. The explanation for this was
fairly simple. When using simply the value, two occurrences of a <tag, word> pair within
a document results in a value of 2 whereas one occurrence results in a value of 1. The effect
is that the algorithm identifies that having two occurrences of a feature within a document
is twice as significant as simply one occurrence. Hence, this algorithm still placed too much
importance on the multiple occurrences of a <tag, word> pair with a document. So, to
solve this problem the Modified Saturated Base Value Sum algorithm was designed.

This algorithm was almost identical to the Modified Saturated Value Sum algorithm, but
instead of directly using the value of a <tag, word> pair, a base value was added before
inclusion into the document type feature vector. As an example, using a base value of 5,
when a <tag, word> pair appeared only once in a document, the value associated with it
would be 5. However, if it appeared twice, it would be given a value of 6. So, now the feature
is identified as being more significant, but not twice as significant. And, as anticipated, this
algorithm typically performed just as well, if not better, that the Incremental Sum algorithm
in most cases.

Although the preceding paragraphs describe the process the was taken in determining
how to construct the document type feature vector and provide a commonsense explanation
as to the selection of which algorithm to incorporate into the system, in order to validate
the decision, the following analysis was performed.

For each of the six algorithms, document type feature vectors were constructed for four
different document types: Abstract, Recipe, Resume, and University Department Home
page. In addition, the document type feature vectors were constructed from ten sample
documents of each type. Using the Hamming neural network system, a special query was
performed utilizing the local database, with the prototype vectors being constructed from
the top twenty-five features of each document type. This special query was designed to
ensure that a specific set of two hundred documents was used and returned as the results.
These two hundred documents were a handpicked set of 50 Abstract documents, 50 Recipe
documents, 50 Resume documents and 50 University Department Home Page documents.
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Figure 7. Document type feature vector algorithm analysis.

The results of the special query were the 200 documents classified into one of the four
document types.

Figure 7 shows the results of the analysis and corroborates our initial observations when
testing the different algorithms. For each of the six algorithms, the number of documents
classified correctly was considered true positive results and the number of documents clas-
sified incorrectly was classified as false positive results. For this test, it turned out that both
the Incremental Sum algorithm (A1) and the Modified Saturated Base Value Sum algorithm
(A6) had true positive results of 95.5% and false positive results of 4.5%. The next best
algorithm was the Modified Saturated Value Sum algorithm (A5), which had a 90 to 10%
ratio of true positives tofalse positives. The Saturated Value Sum algorithm (A4) and the
Value Sum algorithm (A2) both performed poorly having true positive results and false
positive results of 73 to 27% and 67 to 33%, respectively. Finally, the Saturated Incremental
Sum algorithm (A3) performed dismally with a higher false positive result of 55% than the
true positive result of 45%.

Another issue that was studied was determining the optimal number of example doc-
uments (or document feature vectors) needed to create a document type feature vector.
Optimal probably is not the best word to use here since the optimal number is as many as
possible. But, since one of the fundamental goals of the system was to allow the user to
create the document type feature vectors by providing example documents, the ideal number
actually should be as small as possible. Clearly, requiring the user to provide hundreds of
sample documents would be counterproductive to the whole idea of reducing the number
of relevant documents returned in a query, since the user would have to spend time finding
or generating these sample documents. However, the system is robust enough to create
document type feature vectors from any number of sample documents.
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To perform this analysis, using the Hamming neural network system, the same special
query that was used to validate the algorithm selection was performed. In addition, the doc-
ument type feature vectors were constructed from the same set of two hundred document
type samples listed earlier, however, this time only the Modified Saturated Base Value Sum
algorithm was used. The first test was performed using all two hundred sample documents
(i.e. 50 documents of each type). Subsequent tests were then performed by creating docu-
ment type feature vectors with sample sizes of 100, 60, 48, 40, 32, 20, and 12 documents,
where an equal number of documents from each document type were selected in each test.
In addition, for the construction of the prototype vectors for the Hamming neural network,
the number of features selected from each document type feature vector was twenty-five.
The choice of this value is validated in the following section.

Figures 8–15 show the classification success/failure rate when attempting to classify the
original two hundred documents using the feature vectors constructed from the specified
number of sample documents. In figure 8, when all 200 documents are used to create the
document type feature vectors, a classification success rate of 97.5% was achieved. And,
an even better classification success rate of 98% was observed when only 25 documents of
each type were used, as can be observed in figure 9. This difference is not significant since

Figure 8. # Documents = 200.

Figure 9. # Documents = 100.
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Figure 10. # Documents = 60.

Figure 11. # Documents = 48.

Figure 12. # Documents = 40.

it simply reflects the fact that only one more document was classified correctly, and so the
real conclusion to draw here is that there is no significant difference between constructing
the document type feature vectors from 200 documents as opposed to 100 documents.

In addition, as figures 10–13 show, there is very little difference between selecting a
sample size of 60, 48, 40, or 32, as the classification success rate for these are 96%, 95.5%,
95% and 94.5%, respectively.
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Figure 13. # Documents = 32.

Figure 14. # Documents = 20.

Figure 15. # Documents = 12.

In fact, even when only five document of each type are selected (twenty documents total),
a classification success rate of 90% is still achieved as can be seen in figure 14. However,
figure 15 shows that there is a significant drop off when only three document type vectors
are selected from each category as the classification success rate falls to 74%. Hence, the
results would indicate that selecting a sample size of approximately ten documents should
provide fairly good results.
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In addition, as figures 10–13 show, there is very little difference between selecting a
sample size of 60, 48, 40, or 32, as the classification success rate for these are 96%, 95.5%,
95% and 94.5%, respectively.

3.2. Prototype vector selection

Another decision studied was determining how many features to select from each document
type feature vector when constructing the prototype vectors for the system. Theoretically,
the number of features in the document type feature vector could be nearly as large as the
size of the set combining the entire document feature vectors. However, a majority of these
features would likely be irrelevant, especially since a large percentage of the <tag, word>

pairs appear in only one document. Since the size of this vector ultimately determines the
number of features to be compared by the systems, it was important to select a large enough
size to ensure high quality results but not so large as to significantly effect the performance
of the system.

To test the prototype vector size, another analysis was performed, once again using
the same special query, with the Modified Saturated Base Value Sum algorithm and the
document type feature vectors constructed using the same two hundred document type
samples utilized in earlier tests. The variable for this test was to run several queries adjusting
the number of features used by the Hamming neural network system. In other words,
although the document type feature vector maintained by the system may contain several
thousand features for each document type, the number of features used in the construction
of the prototype vectors should be considerably less. The objective of this analysis was
simply to determine a reasonable lower bound.

Figures 16–21 display the results of the analysis of constructing the prototype vectors
for each document type using n features from each document type feature vector. In each
test, the value of n was decreased and the results were analyzed to determine the number
of successful and unsuccessful classifications. However, regardless of the total number of
features selected, the top n features of each document type were always selected.

Figure 16. Top 100 features.
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Figure 17. Top 50 features.

Figure 18. Top 25 features.

Figure 19. Top 20 features.

Clearly, the results from figures 17–21 shows that regardless of whether the top 100, 50,
25, 20, or even top 15 features are used in the construction of the prototype vectors, the
system still classified successfully at or above 97%. In fact, as can be observed in figure 21,
even when only the top 10 features were used, the system still achieved a classification
success rate of almost 95%.
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Figure 20. Top 15 features.

Figure 21. Top 19 features.

In the analysis of both the document type feature vector algorithms and the document
type vector size, both tests selected twenty-five features from the document type feature
vectors when constructing the prototype vectors of the system. Clearly, the above results
show that twenty-five features were more than adequate. However, it should also be evident
that the choice of both the number of sample documents used to create the document type
feature vector as well as the number of features to select from this vector when creating the
prototype vectors are highly related.

3.3. System test

The experiments in the previous section all utilized the same set of documents to both train
the network as well as to perform the various validation tests. To truly test the system, a new
set of 20 sample documents was obtained. Then a new special query designed to ensure that
the new set of 20 documents was used and returned as the results was performed. Four tests
were performed using a different sample size to create the document type feature vectors.
The results are shown in figure 22 for sample sizes of 10, 15, 25, and 50.
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Figure 22. New sample test results.

As the results show, the classification for document type feature vectors created with 10,
15, and 25 sample documents all resulted in a 90% success rate. It required a sample set
of 50 documents before the classification success rate reached 100%. The tests shown in
figure 22 used the top 10 features of each document type feature vector to construct the
prototype vectors. Other tests were performed where the number of features selected from
the document type feature vectors, but there was virtually no change in the results.

3.4. PCA query-by-semantics systems analysis

Compared to the tests from the Hamming neural network system, the initial results of the
PCA approaches were too dismal to even warrant much discussion. However, some positive
analysis was obtained in validating the use of the document type feature vectors to improve
the PCA system.

First, a document feature vector matrix was using the same two hundred sample docu-
ments used in the previous sections. This matrix contained two hundred rows and over fifty
thousand columns which represented the total number of unique <tag, word> pairs among
all two hundred documents. The entries in the matrix were the values associated with the
<tag, word> pairs for each document. Figure 23 shows the process of taking this rather
large matrix and using PCA to reduce the dimensionality. However, instead of using the
PCA resultant matrix to train the neural network, the matrix was input into the Weka toolkit
[12], after adding an extra column with a label to identify each row’s document type.

The Weka toolkit is an open-source collection of machine learning algorithms written
in Java designed to solving real-world data mining problems. Weka is well suited for
developing new machine learning schemes and has several modules that can be applied
directly to a data set. One such module implements an algorithm called 10-fold cross-
validation. The 10-fold cross-validation algorithm takes a matrix with labeled rows and
trains a classifier to be able to recognize which class a vector might belong to. The label on
each row identifies the class.
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Figure 23. 10-fold cross validation.

The 10-fold cross validation algorithm works as follows. First, during the training phase,
the algorithm takes as input 90% of the vectors in the matrix to train the classifier. In this
step, the vectors that are used contain the class label. Next, during the testing phase, the
remaining 10% of the vectors are input with the class label removed. The terminology
“10-fold” represents that the process is repeated ten times, with different vectors selected
for training and testing, with the results being averaged.

The general idea is that 10-fold cross-validation can be used to validate the input data.
Hence, for the systems presented here, this algorithm can be used to determine whether the
document feature vectors provide an adequate representation of the document type.

Figure 24 shows the results of the cross-validation of the original matrix. As can be
observed, the results were not particularly good. One logical explanation for this is that
the features of the original vectors input into the Document Feature Construction module
contained the values associated with each <tag, word> pair. This is analogous to the use
of the values in the Value Sum algorithm which during testing was shown to be an inferior
approach and hence not as useful.

With that in mind, another test was performed using the PCA Hybrid approach of
first building the document type feature vectors from the original input documents. After

Figure 24. Cross validation results.
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Figure 25. 10-fold cross validation with document type feature vectors.

construction of these vectors, the input vectors and the document type feature vectors were
input into the Document Feature Construction Module, which then transformed the input
vectors into new vectors in a fashion similar to the construction of the prototype vectors of
the Hamming neural network. This process is shown in figure 25.

The results of this test are shown in figure 26. Clearly, there was a significant improvement
over the previous cross-validation test. In fact, over 90% of the documents were classified
correctly. Hence, if anything, this at least further validates the use of the document type
feature vectors in performing classification, and demonstrates that even with a relatively
small set of sample documents, classification can be effectively performed.

Finally, so as to perform a similar comparison between the modified feature matrix and
the original feature matrix, another cross-validation test was performed using only the top
45 features from the matrix generated by original PCA matrix.

As can be seen from the results in figure 27, this clearly would not be an effective approach
to reducing the number of features. However, although the cross-validation results of the
straightforward PCA approach were not that promising, it does not necessarily mean that

Figure 26. Cross validation results using document type feature vectors.
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Figure 27. Cross validation results with reduced number of features.

the approach is not worth pursing. The most likely problem is that for PCA to function
optimally, it requires a very large set of sample documents. Although two hundred samples
seem like a large number, PCA typically performs best with significantly larger sample
sizes. However, this is a significant problem as it relates to the current approach being
studied. Namely, the objective is to create a dynamic system that allows the users to provide
a relatively small set of sample documents, and still be able to achieve fairly relevant queries
with improved results. However, the cross-validation results of the hybrid approach did give
fairly promising results, which definitely warrant further study.

3.5. Final remarks

The system is available for public use. To request and account, simply follow the instructions
at: http://acs.madonna.edu/qbys/

4. Extension of our system in semantic multimedia document search

Recent development of digital media technology has generated huge amount of multime-
dia documents on the Web. Effective and efficient search of multimedia documents has
merged as an important and challenging area in multimedia computing. Research in human
perception of multimedia content suggests that the semantic cues play an important role in
multimedia document retrieval. Users usually pose and expect a retrieval to provide answers
to semantic questions (for example, show me an image of the sky), and not low level (for
example, show me a predominantly blue and white image). However, current state-of-art
computer vision technology lags far behind the human’s ability to assimilate information
at a semantic level [22]. It is clear that retrieval by similarity of visual attributes when used
arbitrarily cannot provide semantically meaningful information. For example, a search for
a red flower by color red on a very heterogeneous database cannot be expected to yield
meaningful results.

Many multimedia documents on the Web have some associated annotation information
such as keywords, title, date, and authors. If not, we could still get similar information
on the basis of the text surrounding the multimedia documents [5]. Our system could be
easily adopted to produce multimedia document type feature vector based on the annotation
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Table 1. 10 Multimedia document types.

information and facilitate the multimedia document search. We collected a small set of im-
ages from Corel CD (200 landscape images). Each image comes with around 20 keywords
annotated by Corel employees. Based on the annotations, we group the images into 10 mul-
timedia document types (see Table 1) and use our system to generate corresponding feature
vectors. Our preliminary results show that our approach could provide more meaningful
retrieval results when compared with pure visual attribute search.

5. Related works

Popular World Wide Web search engines such as AltaVista and Yahoo! [25] allow users
to search for web pages by providing search words which are used to query the search
engine’s database for URLs of web pages containing those search words. However, most
search engines utilize very little, if any, detailed structure information. HotBot [13] is
one search engine that does give the user the capability to specify that the documents they
are searching for contain images, video, and/or Javascript code. In addition, Google is
another search engine that utilizes structure information. The exceptional research paper,
“The Anatomy of a Large-Scale Hypertextual Web Search Engine” [4], published on the
inner workings of the Google search engine, discusses use of various HTML tags with
emphasis on document linking. Due to Google’s mainstream acceptance, this is a clear
indication of the relevance of utilizing structure within a document search.

Most search engines dynamically search the web. However, these types of searches are
typically done in the background. In other words, these search engines do not allow the
user to directly query the web but rather to directly query the search engine’s database.
A real web query system locates documents by dynamically retrieving and scanning the
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documents during the query process. Although there may not exist any mainstream search
engine that can directly query the web, there has been a significant amount of research done
in this area. WebSQL [21], WebLog [17], and W3QS [16] are examples of languages and
systems used to directly query the Web. All three of these approaches use a limited amount
of document structure information when analyzing documents retrieved from a web query.

There has also been a significant amount of research in an attempt to improve web searches
using machine learning techniques. WebWatcher [5, 20] and LASER [3], for example, are
systems that assist users in locating desired information on a specific site. These systems
track the user’s actions and utilize machine learning methods to acquire knowledge about
user’s goals, web pages users visit, and success or failure of the search. Rankings are based
on keywords. In addition, LASER incorporated document structure into the search process.
Another system, called Syskill and Webert [23], utilizes six different machine learning
algorithms. This system also requires user interaction by requesting that the user rate pages
on a three-point scale. After analyzing information on each page, individual user profiles
are then created. Based on the user profile, the system suggests other links that might be of
interest to the user.

Finally, two systems that are probably the most similar the research presented here are:
Watson [22, 25] and Inquirus 2 [8, 23]. Both systems are currently accessible to users on
the Web. In addition, both systems also utilize existing search engines and enhance the
search with query modification techniques. And, both systems take advantage of document
structure when determining what information to present to the user. However, there are
some significant differences to the systems presented here.

Watson, for instance, only considers four kinds of structure: normal words emphasized
words, de-emphasized words, and list item. The authors were not entirely clear on what
constituted a word within each of the specific categories, although they did provide some
basic explanations. However, it seems apparent that their use of structure is hard-coded and
fixed by the system providing no mechanism for the user to specify what is emphasized
and what is not. In addition, it does not appear that the system is using any type of machine
learning techniques to analyze the documents. Finally, the system isn’t designed so much to
identify document types as much as it is attempt to identify information relevant the users
current task at hand, which it accomplishes by monitoring what the user is currently doing
or viewing and requesting additional feedback as well.

Inquirus 2, on the other hand, has several more things in common with the research
presented here. First there is the use of document structure. Inquiris 2 converts document
into vectors of words (or phrases) within specific structure elements. The structure elements
include: title, 1st 75 terms within a document, anywhere in the text, in a heading or empha-
sized, in the anchor text and other special words, symbols or characters. Coincidentally, the
authors have identified these structure elements as document vector types.

As the name implies, the Inquirus 2 system converts web documents into document type
vectors. The system then attempts to classify the documents according to a category. The
designers of this system chose to use SVM [6] to classify documents. In [8], the authors
describe a test where they took a sample set of 2618 positive and negative examples of
personal home pages web documents and 2703 positive and negative examples of call for
papers web documents. These pages were manually gathered by exhaustively searching
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various web sites. The authors claim to have achieved a better than 2% false positive rate
for the classification of these document types.

There are two significant differences to the Inqiris 2 system and the research presented
here. First, although document structure an integral part of the Inqiris 2 system, the document
structure analyzed by the system is fixed. And, more significantly, the designers of the system
also predetermine the document type thus limiting the number of possible document types.
This concept alone was the fundamental reason for redesigning the query-by-structure
system almost two years ago. Granted the system does create document types based on
example documents instead of hard-coding the features. However, there is no mechanism
in place for users of the system to create their own document types. Currently, on the
most recent visit to the Iquiris 2 web site, the following categories were listed: Personal
Home Pages, Research Papers, Product Reviews, Guides and FAQ, Calls for Papers, and
Genealogy.

6. Conclusions and future research

The content of a document is clearly crucial in any type of query. However, the research
presented here has shown that the query-by-structure and query-by-semantics approaches
have potential as well. The CLaP system showed us that utilizing structure as well as content
during a web search could significantly improve query performance. However, the system
required that the user specify specific details about the document structure as part of their
query. As a result, when performing even the simplest of queries, an inordinate amount of
information was required from the user. In order to eliminate these complex queries, we
chose to test the feasibility of a different approach that utilized neural networks within the
query process. The neural network systems resulted in an equally good performance and
demonstrated that the burden of identifying structure within the document can become the
responsibility of the system rather than the user.

However, although the initial query-by-structure systems provided promising results, to
produce a viable system, it was necessary to incorporate some modifications. Clearly, the
database module needed to be implemented, as the query response turnaround time was
much too long. In addition, the modification of the document feature vector solved the issue
of the designer defining the document type. Now, the user basically has the ability to say
“give me a document that has these words and looks like this.”

Finally, it should be noted anointed father of the World Wide Web, Hans Berners-Lee,
claims that there is currently a paradigm shift taking place towards a Semantic Web [2].
The basic notion is that new web documents are being creating with specific semantic
tags, primarily using XML. These tags provide additional meaning to the text within the
document. In other words, the HTML tags within a document are used to describe the
structure or layout of the document and the XML tags are used to provide a more detailed
description of the content of the documents. New search tools are being created to identify
documents containing these descriptive semantic tags that will potentially revolutionize the
way web searches are performed and immensely increase the quality of these searches.

At first glance, the concept of the Semantic Web might lead one to think that the query-by-
semantics approach presented here could become obsolete rather shortly. However, there
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are at least two major implications that should lead one to conclude the exact opposite.
First, what is to be done with the billions of already created or soon to be created web
pages containing only HTML with no semantic information whatsoever. Clearly, it would
be unreasonable to think that all of these documents must be redesigned to adapt to the
Semantic Web. Secondly, if one thinks of these semantic tags as simply another form of
structure (i.e. semantic structure instead of presentation structure), the query-by-semantics
approach might, in fact, be extremely relevant to the Semantic Web.

In fact, in [18], Lu et al. describe some of the flaws in the current semantic web search
engines and claim: “XML is a promising technique since it keeps content, structure, and
representation apart and is a much more adequate means for knowledge representation.
However, XML can represent only some semantic properties through its syntactic structure.
XML queries need to be aware of syntactic structure”. The authors then proceed to describe
how Semantic Web search engines will be built with ontologies that will describe the context
of a document. However, we contend that the concept of document semantics and document
types, with some additional enhancements and modifications, the systems describe in this
research will be able to thrive on the Semantic Web.
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